| 1,839 | 2 | 117 |
| 下载次数 | 被引频次 | 阅读次数 |
数字经济为实现经济增长与土地绿色利用提供了新的可能。基于2003—2023年长江经济带108个城市的面板数据,本文采用双向固定效应模型和动态空间杜宾模型研究数字经济对土地绿色利用效率的影响、作用机制及空间溢出效应。研究结果显示:数字经济能够提升土地绿色利用效率;“宽带中国”示范城市政策能够增强数字经济对土地绿色利用效率的提升效应;数字经济对长江中游、下游地区土地绿色利用效率的提升效应更明显;数字经济通过推动产业集聚、促进技术创新和加强环境规制提升土地绿色利用效率;数字经济对土地绿色利用效率的影响还会通过空间溢出效应对邻近地区产生正向影响,且长期溢出效应大于短期溢出效应;数字经济对土地绿色利用效率的空间溢出效应受到地理距离的限制,随地理距离增加呈现先促进后抑制,直至不显著的趋势。为了提升土地绿色利用效率,应充分发挥空间联动效应,推动产业结构优化升级,打造区域数字产业集群。
Abstract:Although the traditional “land-driven development” model created the “Chinese miracle” of economic growth,its accompanying problems, such as inefficient land use, extensive production patterns, and ecological degradation, have gradually emerged. Facing the severe challenge of limited land resources, actively revitalizing underutilized land, adjusting land use patterns, and promoting intensive, green, and low-carbon land use transitions can not only curb high resource consumption and pollution emissions but also alleviate structural imbalances and regional disparities in land supply-demand relationships, laying a solid foundation for sustainable land resource utilization. Therefore, balancing economic development with environmental protection and improving green land use efficiency has become an urgent issue.This paper employs panel data from 108 cities in the Yangtze River Economic Belt from 2003 to 2023, using a two-way fixed effects model and a dynamic spatial Durbin model to study the impact of the digital economy on green land use efficiency, the mechanisms, and its spatial spillover effects. The findings indicate that the digital economy can enhance green land use efficiency. Its empowering effect is more significant in the central and lower reaches of the Yangtze River.The implementation of the “Broadband China” strategy has strengthened the empowering effects of the digital economy on green land use efficiency. The digital economy mainly enhances green land use efficiency by promoting industrial agglomeration, facilitating technological innovation, and strengthening environmental regulation. The positive impact of the digital economy on green land use efficiency is not limited to the local area but also exerts a positive influence on surrounding regions through spatial spillover effects, with long-term spillover effects being stronger than short-term ones.The spatial spillover effects of the digital economy on green land use efficiency are constrained by geographical distance,showing a trend of first promotion and then inhibition as distance increases.This paper's potential marginal contributions are as follows. First, it proposes that the digital economy enhances green land use efficiency by promoting industrial agglomeration, facilitating technological innovation, and strengthening environmental regulation. It examines the transmission effects of these three mechanisms, thereby deepening the explanation of how the digital economy boosts green land use efficiency. Second, it provides a more comprehensive empirical identification of the short-term and long-term spatial effects of the digital economy on green land use efficiency,offering new perspectives and methods for research in related fields. Third, it verifies the hypothesis that spatial spillover effects decrease with economic geographic distance and measures the regional boundaries of spatial spillover, providing empirical support and decision-making references for differentiated policy formulation across regions.
[1] SKJEGGEDAL T, FLEMSAETER F, GUNDERSEN V. Land use planning in disputed mountain areas:conflicting interests and common arenas[J]. Journal of environmental planning and management,2021,64(7):1133-1155.
[2] VAN MOORTER B, KIVIMAKI I, NOACK A, et al. Accelerating advances in landscape connectivity modelling with the ConScape library[J]. Methods in ecology and evolution,2023,14(1):133-145.
[3] MARTINEZ PARDO J, SAURA S, INSAURRALDE A, et al. Much more than forest loss:four decades of habitat connectivity decline for Atlantic Forest jaguars[J]. Landscape ecology,2023,38(1):41-57.
[4] PAGLIARIN S. Ebbs and flows of metropolitan authorities:supra-local spatial planning and impact on land-use patterns[J]. Journal of environmental planning and management,2023,66(8):1694-1719.
[5]陈丹玲,卢新海,张超正,等.组态视角下协同创新驱动城市土地绿色利用效率提升的路径选择[J].中国人口·资源与环境,2022,32(10):103-111.
[6]盖庆恩,朱喜,程名望,等.土地资源配置不当与劳动生产率[J].经济研究,2017,52(5):117-130.
[7]邓楚雄,钟小龙,谢炳庚,等.洞庭湖区土地生态系统的服务价值时空变化[J].地理研究,2019,38(4):844-855.
[8]周凯,王福海.土地利用系统社会效益评价研究——以重庆市巴南区为例[J].中国人口·资源与环境,2017,27(S2):166-169.
[9]李永乐,吴群,舒帮荣.城市化与城市土地利用结构的相关研究[J].中国人口·资源与环境,2013,23(4):104-110.
[10]黄林秀,郝坚.数字经济、创新差距和中心—外围城市经济差距——基于新经济地理的视角[J].改革,2024(3):113-126.
[11]杨慧梅,江璐.数字经济、空间效应与全要素生产率[J].统计研究,2021,38(4):3-15.
[12]秦芳,王剑程,胥芹.数字经济如何促进农户增收?——来自农村电商发展的证据[J].经济学(季刊),2022,22(2):591-612.
[13]郭凯明,王钰冰,杭静.数据要素规模效应、产业结构转型与生产率提升[J].中国工业经济,2024(8):5-23.
[14] JONES C I,TONETTI C. Nonrivalry and the economics of data[J]. The American economic review,2020,110(9):2819-2858.
[15]胡碧霞,吴楚仪,匡兵,等.基于土地利用的数字经济赋能中国城市高质量发展的机制与效应[J].经济地理,2024,44(11):184-193.
[16]张雯熹,吴群,王博,等.产业专业化、多样化集聚对城市土地利用效率影响的多维研究[J].中国人口·资源与环境,2019,29(11):100-110.
[17]张倩华,边志强.产业转型升级示范区建设对城市土地绿色利用效率的影响研究[J].中国土地科学,2024,38(10):105-114.
[18]张瑞,文兰娇,王宁柯,等.科技创新对城市土地绿色利用效率的影响——以武汉都市圈48个区县为例[J].资源科学,2023,45(2):264-280.
[19]龚勤林,乔涛,冷玉婷.数字经济与农业全要素生产率:技术进步和要素流动的视角[J].华中农业大学学报(社会科学版),2025(2):15-27.
[20]范翔宇,卢新海,刘进进.数字经济发展对城市土地绿色利用效率的影响——基于基础设施建设的调节效应分析[J].中国土地科学,2023,37(5):79-89.
[21]董直庆,王辉.环境规制的“本地—邻地”绿色技术进步效应[J].中国工业经济,2019(1):100-118.
[22]申志轩,祝树金,文茜,等.以有为政府赋能有效市场:政府数字治理与企业投资效率[J].世界经济,2025(2):166-195.
[23]黄勃,李海彤,刘俊岐,等.数字技术创新与中国企业高质量发展——来自企业数字专利的证据[J].经济研究,2023,58(3):97-115.
[24]孟维福,张高明,赵凤扬.数字经济赋能乡村振兴:影响机制和空间效应[J].财经问题研究,2023(3):32-44.
[25] ACEMOGLU D, RESTREPO P. The race between man and machine:implications of technology for growth, factor shares and employment[J]. The American economic review,2018,108(6):1488-1542.
[26]孙燕,吴莉莉,金晓斌,等.长三角区域一体化对城市群土地利用效率的空间协同效应[J].地理研究,2024,43(8):2104-2120.
[27]梁流涛,雍雅君,袁晨光.城市土地绿色利用效率测度及其空间分异特征——基于284个地级以上城市的实证研究[J].中国土地科学,2019,33(6):80-87.
[28]陈梦根,周元任.数字经济、分享发展与共同富裕[J].数量经济技术经济研究,2023,40(10):5-26.
[29] O'DONOGHUE D,GLEAVE B. A note on methods for measuring industrial agglomeration[J]. Regional studies,2004,38(4):419-427.
[30]边志强.经济增长目标管理对城市土地绿色利用效率的影响——基于282个地级及以上城市的经验证据[J].中国土地科学,2024,38(4):54-64.
[31]刘荣增,何春.环境规制对城镇居民收入不平等的门槛效应研究[J].中国软科学,2021(8):41-52.
[32] VAGA S H, ELHORST J P. Regional labour force participation across the European Union:a time-space recursive modelling approach with endogenous regressors[J]. Spatial economic analysis,2017,12(3):138-160.
[33]韩文龙,张瑞生,赵峰.新质生产力水平测算与中国经济增长新动能[J].数量经济技术经济研究,2024,41(6):5-25.
[34]赵涛,张智,梁上坤.数字经济、创业活跃度与高质量发展——来自中国城市的经验证据[J].管理世界,2020,36(10):65-76.
[35]卢新海,陶向前,匡兵,等.环保考核、政府环境注意力与城市土地绿色利用效率[J].中国土地科学,2023,37(8):104-112.
[36]江艇.因果推断经验研究中的中介效应与调节效应[J].中国工业经济,2022(5):100-120.
[37]魏丽莉,侯宇琦.数字经济对中国城市绿色发展的影响作用研究[J].数量经济技术经济研究,2022,39(8):60-79.
[38]刘维林,程倩.数字产业渗透、全球生产网络与非对称技术溢出[J].中国工业经济,2023(3):96-114.
[39]苟红霞,高志刚,韩延玲.数字经济、异质性环境规制与资源型城市碳排放[J].山东大学学报(哲学社会科学版),2025(2):146-160.
[40] BEHRENS K,THISSE J F. Regional economics:a new economic geography perspective[J]. Regional science and urban economics,2006,37(4):457-465.
(1)稳健性检验结果未在正文中列出,留存备索。
(1)全局Moran's I指数结果未在正文中列出,留存备索。
(2)空间计量模型的选择与检验结果未在正文中列出,留存备索。
基本信息:
DOI:10.19654/j.cnki.cjwtyj.2025.05.009
中图分类号:X321;F49;F301.2
引用信息:
[1]张莉,陈凯,张杨.数字经济如何提升土地绿色利用效率——基于长江经济带108个城市的实证分析[J].财经问题研究,2025,No.498(05):104-117.DOI:10.19654/j.cnki.cjwtyj.2025.05.009.
基金信息:
国家社会科学基金重点项目“统筹创新资源空间集聚需求与地区均衡发展的协调机制及政策研究”(22AJY014); 辽宁省科协科技创新智库项目“绿色发展背景下推动我省有色金属材料高质量发展对策研究”(LNKX2024A22)